
www.manaraa.com

Supply Chain and Information Systems 
Publications Supply Chain and Information Systems 

2017 

Bayesian Network Learning via Topological Order Bayesian Network Learning via Topological Order 

Young-Woong Park 
Iowa State University, ywpark@iastate.edu 

Diego Klabjan 
Northwestern University 

Follow this and additional works at: https://lib.dr.iastate.edu/scm_pubs 

 Part of the Business Analytics Commons, Electronic Devices and Semiconductor Manufacturing 

Commons, Management Information Systems Commons, and the Management Sciences and 

Quantitative Methods Commons 

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/

scm_pubs/80. For information on how to cite this item, please visit http://lib.dr.iastate.edu/

howtocite.html. 

This Article is brought to you for free and open access by the Supply Chain and Information Systems at Iowa State 
University Digital Repository. It has been accepted for inclusion in Supply Chain and Information Systems 
Publications by an authorized administrator of Iowa State University Digital Repository. For more information, 
please contact digirep@iastate.edu. 

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/scm_pubs
https://lib.dr.iastate.edu/scm_pubs
https://lib.dr.iastate.edu/scm
https://lib.dr.iastate.edu/scm_pubs?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1398?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/272?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=lib.dr.iastate.edu%2Fscm_pubs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/scm_pubs/80
https://lib.dr.iastate.edu/scm_pubs/80
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu


www.manaraa.com

Bayesian Network Learning via Topological Order Bayesian Network Learning via Topological Order 

Abstract Abstract 
We propose a mixed integer programming (MIP) model and iterative algorithms based on topological 
orders to solve optimization problems with acyclic constraints on a directed graph. The proposed MIP 
model has a significantly lower number of constraints compared to popular MIP models based on cycle 
elimination constraints and triangular inequalities. The proposed iterative algorithms use gradient 
descent and iterative reordering approaches, respectively, for searching topological orders. A 
computational experiment is presented for the Gaussian Bayesian network learning problem, an 
optimization problem minimizing the sum of squared errors of regression models with L1 penalty over a 
feature network with application of gene network inference in bioinformatics. 

Keywords Keywords 
Bayesian networks, topological orders, Gaussian Bayesian network, directed acyclic graphs 

Disciplines Disciplines 
Business Analytics | Electronic Devices and Semiconductor Manufacturing | Management Information 
Systems | Management Sciences and Quantitative Methods 

Comments Comments 
This article is published as Y.W. Park and D. Klabjan (2017) Bayesian Newtwork Learning via Topological 
Order. Journal of Machine Learning Research 18(99);1-32. 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/scm_pubs/80 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://lib.dr.iastate.edu/scm_pubs/80


www.manaraa.com

Journal of Machine Learning Research 18 (2017) 1-32 Submitted 1/17; Revised 8/17; Published 10/17

Bayesian Network Learning via Topological Order

Young Woong Park ywpark@iastate.edu
College of Business
Iowa State University
Ames, IA 50011, USA

Diego Klabjan d-klabjan@northwestern.edu

Department of Industrial Engineering and Management Sciences

Northwestern University

Evanston, IL 60208, USA

Editor: Zhihua Zhang

Abstract

We propose a mixed integer programming (MIP) model and iterative algorithms based on
topological orders to solve optimization problems with acyclic constraints on a directed
graph. The proposed MIP model has a significantly lower number of constraints compared
to popular MIP models based on cycle elimination constraints and triangular inequalities.
The proposed iterative algorithms use gradient descent and iterative reordering approaches,
respectively, for searching topological orders. A computational experiment is presented for
the Gaussian Bayesian network learning problem, an optimization problem minimizing the
sum of squared errors of regression models with L1 penalty over a feature network with
application of gene network inference in bioinformatics.

Keywords: Bayesian networks, topological orders, Gaussian Bayesian network, directed
acyclic graphs

1. Introduction

Directed graph G is a directed acyclic graph (DAG) or acyclic digraph if G does not contain
a directed cycle. In this paper, we consider a generic optimization problem over a directed
graph with acyclic constraints, which require the selected subgraph to be a DAG.

Let us consider a complete digraph G. Let m be the number of nodes in digraph G,
Y ∈ Rm×m a decision variable matrix associated with the arcs, where Yjk is related to arc
(j, k), supp(Y ) ∈ {0, 1}m×m the 0-1 (adjacency) matrix with supp(Y )jk = 1 if Yjk 6= 0,
supp(Y )jk = 0 otherwise, G(supp(Y )) the sub-graph of G defined by supp(Y ), and let A be
the collection of all acyclic subgraphs of G. Then, we can write the optimization problem
with acyclic constraints as

min
Y

F (Y ) s.t. G(supp(Y )) ∈ A, (1)

where F is a function of Y .

Acyclic constraints (or DAG constraints) appear in many network structured problems.
The maximum acyclic subgraph problem (MAS) is to find a subgraph of G with maximum
cardinality while the subgraph satisfies acyclic constraints. MAS can be written in the

c©2017 Young Woong Park and Diego Klabjan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/17-033.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-033.html


www.manaraa.com

Park and Klabjan

form of (1) with F (Y ) = −‖supp(Y )‖0. Although exact algorithms were proposed for
a superclass of cubic graphs (Fernau and Raible, 2008) and for general directed graphs
(Kaas, 1981), most of the works have focused on approximations (Even et al., 1998; Hassin
and Rubinstein, 1994) or inapproximability (Guruswami et al., 2008) of either MAS or the
minimum feedback arc set problem (FAS). FAS of a directed graph G is a subgraph of G that
creates a DAG when the arcs in the feedback arc set are removed from G. Note that MAS
is closely related to FAS and is dual to the minimum FAS. Finding a feedback arc set with
minimum cardinality is NP-complete in general (Karp, 1972). However, minimum FAS is
solvable in polynomial time for some special graphs such as planar graphs (Lucchesi and
Younger, 1978) and reducible flow graphs (Ramachandran, 1988), and a polynomial time
approximation scheme was developed for a special case of minimum FAS, where exactly one
arc exists between any two nodes, called tournament (Kenyon-Mathieu and Schudy, 2007).

DAGs are also extensively studied in Bayesian network learning. Given observational
data with m features, the goal is to find the true unknown underlying network of the nodes
(features) while the selected arcs (dependency relationship between features) do not create
a cycle. In the literature, approaches are classified into three categories: (i) score-based
approaches that try to optimize a score function defined to measure fitness, (ii) constraint-
based approaches that test conditional independence to check existence of arcs between
nodes (iii) and hybrid approaches that use both constraint and score-based approaches.
Although there are many approaches based on the constraint-based or hybrid approaches,
our focus is solving (1) by means of score-based approaches. For a detailed discussion of
constraint-based and hybrid approaches and models for undirected graphs, the reader is
referred to Aragam and Zhou (2015) and Han et al. (2016).

For estimating the true network structure by a score-based approach, various func-
tions have been used as different functions give different solutions and behave differently.
Many works focus on penalized least squares, where penalty is used to obtain sparse so-
lutions. Popular choices of the penalty term include BIC (Lam and Bacchus, 1994), L0-
penalty (Chickering, 2002; Van de Geer and Bühlmann, 2013), L1-penalty (Han et al., 2016),
and concave penalty (Aragam and Zhou, 2015). Lam and Bacchus (1994) use minimum-
description length as a score function, which is equivalent to BIC. Chickering (2002) pro-
poses a two-phase greedy algorithm, called greedy equivalence search, with the L1 norm
penalty. Van de Geer and Bühlmann (2013) study the properties of the L0 norm penalty
and show positive aspects of using L0 regularization. Raskutti and Uhler Raskutti and
Uhler (2013) use a variant of the L0 norm. They use cardinality of the selected subgraph as
the score function where the subgraphs not satisfying the Markov assumption are penalized
with a very large penalty. Aragam and Zhou (2015) introduce a generalized penalty, which
includes the concave penalty, and develop a coordinate descent algorithm. Han et al. (2016)
use the L1 norm penalty and propose a Tabu search based greedy algorithm for reduced
arc sets by neighborhood selection in the pre-processing step.

With any choice of a score function, optimizing the score function is computationally
challenging, because the number of possible DAGs of G grows super-exponentially in the
number of nodes m and learning Bayesian networks is also shown to be NP-complete
(Chickering, 1996). Many heuristic algorithms have been developed based on greedy hill
climbing (Chickering, 2002; Heckerman et al., 1995; Han et al., 2016) or coordinate descent
(Fu and Zhou, 2013), or enumeration (Raskutti and Uhler, 2013) when the score function

2



www.manaraa.com

Bayesian Network Learning via Topological Order

itself is the main focus. There also exist exact solution approaches based on mathematical
programming. One of the natural approaches is based on cycle prevention constraints, which
are reviewed in Section 2. The model is covered in Han et al. (2016) as a benchmark for
their algorithm, but the MIP based approach does not scale; computational time increases
drastically as data size increases and the underlying algorithm cannot solve larger instances.
Baharev et al. (2015) studied MIP models for minimum FAS based on triangle inequalities
and set covering models. Several works have been focused on the polyhedral study of the
acyclic subgraph polytopes (Bolotashvili et al., 1999; Goemans and Hall, 1996; Grötschel
et al., 1985; Leung and Lee, 1994). In general, MIP models have gotten relatively less
attention due to the scalability issue.

In this paper, we propose an MIP model and iterative algorithms based on the following
well-known property of DAGs (Cook et al., 1998).

Property 1 A directed graph is a DAG if and only if it has a topological order.

A topological order or topological sort of a DAG is a linear ordering of all of the nodes in the
graph such that the graph contains arc (u, v) if and only if u appears before v in the order
(Cormen et al., 2009). Suppose that Z is the adjacency matrix of an acyclic graph. Then, by
sorting the nodes of acyclic graph G(Z) based on the topological order, we can create a lower
triangular matrix from Z, where row and column indices of the lower triangular matrix are
in the topological order. Then, any arc in the lower triangular matrix can be used without
creating a cycle. By considering all arcs in the lower triangular matrix, we can optimize F in
(1) without worrying to create a cycle. This is an advantage compared to arc-based search,
where acyclicity needs to be examined whenever an arc is added. Although the search space
of topological orders is very large, a smart search strategy for a topological order may lead
to a better algorithm than the existing arc-based search methods. Node orderings are used
for Bayesian Network learnings based on Markov chain Monte Carlo methods (Ellis and
Wong, 2008; Friedman and Koller, 2003; Niinimäki et al., 2016) as alternatives to network
structure-based approaches.

The proposed MIP assigns node orders to all nodes and add constraints to satisfy Prop-
erty 1. The iterative algorithms search over the topological order space by moving from one
topological order to another order. The first algorithm uses the gradient to find a better
topological order and the second algorithm uses historical choice of arcs to define the score
of the nodes.

With the proposed MIP model and algorithms for (1), we consider a Gaussian Bayesian
network learning problem with L1 penalty for sparsity, which is discussed in detail in Section
4. Out of many possible models in the literature, we pick the L1-penalized least square
model from recently published work of Han et al. (2016), which solves the problem using a
Tabu search based greedy algorithm. The algorithm is one of the latest algorithms based
on arc search and is shown to be scalable when m is large. Further, their score function, L1

penalized least squares, is convex and can be solved by standard mathematical optimization
packages. Hence, we select the score function from Han et al. (2016) and use their algorithm
as a benchmark. In the computational experiment, we compare the performance of the
proposed MIP model and algorithms against the algorithm in Han et al. (2016) and other
available MIP models for synthetic and real instances.

Our contributions are summarized in the following.

3



www.manaraa.com

Park and Klabjan

1. We consider a general optimization problem with acyclic constraints and propose an
MIP model and iterative algorithms for the problem based on the notion of topological
orders.

2. The proposed MIP model has significantly fewer constraints than the other MIP
models in the literature, while maintaining the same order of the number of variables.
The computational experiment shows that the proposed MIP model outperforms the
other MIP models when the subgraph is sparse.

3. The iterative algorithms based on topological orders outperform when the subgraph
is dense. They are more scalable than the benchmark algorithm of Han et al. (2016)
when the subgraph is dense.

In Section 2, we present the new MIP model along with two MIP models in the literature.
In Section 3, we present two iterative algorithms based on different search strategies for
topological orders. The Gaussian Bayesian network learning problem with L1-penalized
least square is introduced and computational experiment are presented in Sections 4 and 5,
respectively.

In the rest of the paper, we use the following notation.

J = {1, · · · ,m} = index set of the nodes
Jk = J \ {k} = index set of the nodes excluding node k, k ∈ J
Z = supp(Y ) ∈ {0, 1}m×m
π = topological order

Given π, we define πk = q to denote that the order of node k is q. For example, given three
nodes a, b, c, and topological order b− c− a, we have πa = 3, πb = 1, and πc = 2. With this
notation, if πj > πk, then we can add an arc from j to k.

2. MIP Formulations based on Topological Order

In this section, we present three MIP models for (1). The first and second models, denoted
as MIPcp and MIPin, respectively, are models in the literature for similar problems with
acyclic constraints. The third model, denoted as MIPto, is the new model we propose based
on Property 1.

A popular mathematical programming based approach for solving (1) is the cutting
plane algorithm, which is well-known for the traveling salesman problem formulation. Let
C be the set of all possible cycles and Cl ∈ C be the set of the arcs defining a cycle. Let
H(supp(Y ), Cl) be a function that counts the number of selected arcs in supp(Y ) from Cl.
Then, (1) can be solved by

MIPcp min
Y

F (Y ) s.t. H(supp(Y ), Cl) ≤ |Cl| − 1, Cl ∈ C, (2)

which can be formulated as an MIP. Note that (2) has exponentially many constraints due to
the cardinality of C. Therefore, it is not practical to pass all cycles in C to a solver. Instead,
the cutting plane algorithm starts with an empty active cycle set CA and iteratively adds
cycles to CA. That is, the algorithm iteratively solves

min
Y

F (Y ) s.t. H(supp(Y ), Cl) ≤ |Cl| − 1, Cl ∈ CA, (3)

4



www.manaraa.com

Bayesian Network Learning via Topological Order

with the current active set CA, detects cycles from the solution, and adds the cycles to CA.
The algorithm terminates when there is no cycle detected from the solution of (3). One of
the drawbacks of the cutting plane algorithm based on (3) is that in the worst case we can
add all exponentially many constraints. In fact, Han et al. (2016) study the same model
and concluded that the cutting plane algorithm does not scale.

Baharev et al. (2015) recently presented MIP models for the minimum feedback arc set
problem based on linear ordering and triangular inequalities, where the acyclic constraints
presented were previously used for cutting plane algorithms for the linear ordering problem
(Grötschel et al., 1984; Mitchell and Borchers, 2000). For any F , we can write the following
MIP model based on triangular inequalities presented in Baharev et al. (2015), Grötschel
et al. (1984), and Mitchell and Borchers (2000).

MIPin min F (Y ) (4a)

s.t. Z = supp(Y ), (4b)

Zqj + Zjk − Zqk ≤ 1, 1 ≤ q < j < k ≤ m, (4c)

− Zqj − Zjk + Zqk ≤ 0, 1 ≤ q < j < k ≤ m, (4d)

Zjk ∈ {0, 1}, 1 ≤ j < k ≤ m (4e)

Note that Zjk is not defined for all j ∈ Jk and k ∈ J . Instead of having a full matrix of
binary variables, the formulation only uses lower triangle of the matrix using the fact that
Zjk + Zkj = 1. We can also use this technique to any of the MIP models presented in this
paper. However, for ease of explanation, we will use the full matrix, while the computational
experiment is done with the reduced number of binary variables. Therefore, the cutting
plane algorithm with MIPcp should be more scalable than the implementation in Han et al.
(2016), which has twice more binary variables.

Baharev et al. (2015) also provides a set covering based MIP formulation. The idea
is similar to MIPcp. In the set covering formulation, each row and column represents a
cycle and an arc, respectively. Similar to MIPcp, existence of exponentially many cycles is
a drawback of the formulation and Baharev et al. (2015) use the cutting plane algorithm.

Next, we propose an MIP model based on Property 1. Although MIPin uses significantly
less constraints than MIPcp, MIPin still has O(m3) constraints which grows rapidly in m.
On the other hand, the MIP model we propose has O(m2) variables and O(m2) constraints.
In addition to Z, let us define decision variable matrix O ∈ {0, 1}m×m.

Okq =

{
1 if πk = q,
0 otherwise,

k ∈ J, q ∈ J

Then, we have the following MIP model.

5



www.manaraa.com

Park and Klabjan

MIPto min F (Y ) (5a)

s.t. Z = supp(Y ), (5b)

Zjk −mZkj ≤
∑
r∈J

r(Okr −Ojr), j ∈ Jk, k ∈ J, (5c)

Zjk + Zkj ≤ 1, j ∈ Jk, k ∈ J, (5d)∑
q∈Jk

Okq = 1, k ∈ J, (5e)

∑
k∈Jq

Okq = 1, q ∈ J, (5f)

Z,O ∈ {0, 1}m×m, Y unrestricted (5g)

The key constraint in (5) is (5c). Recall that Zjk indicates which node comes first in the
topological order and Okr stores the exact location in the order. With these definitions,
(5c) forces correct values of Zjk and Zkj by comparing the order difference. Recall that we
can reduce the number of binary variables Zjk’s by plugging Zjk + Zkj = 1, but we keep
the full matrix notation for ease of explanation. We next show that (5) correctly solves (1).

Proposition 1 An optimal solution to (5) is an optimal solution to (1).

Proof By Property 1, any DAG has a corresponding topological order. Let π∗ be the
topological order defined by an optimal solution Y ∗ for (1). Note that (5e) and (5f) define
a topological order. Hence, it suffices to show that (5) gives a DAG given π∗. Note that the
right hand side of (5c) measures the difference in the topological order between nodes j and
k. If the value is positive, it implies πk > πj . Consider (5c) for j1 and j2 with π∗j2 > π∗j1 .
When j = j1 and k = j2, we have

∑
r∈J r(Oj2r −Oj1r) > 0 in (5c) and at most one of zj1j2

and zj2j1 can be 1 by (5d). When j = j2 and k = j1, we have
∑

r∈J r(Oj1r − Oj2r) < 0 in
(5c) and we must have zj1j2 = 1 by the left hand side of (5c). Therefore, we have correct
value zj1j2 = 1 when π∗j2 > π∗j1 . This completes the proof.

In Table 1, we compare the MIP models introduced in this section. Although all three
MIP models have O(m2) binary variables, MIPto has more binary variables than MIPcp and
MIPin due to Okq’s. MIP models MIPin and MIPto have polynomially many constraints,
whereas MIPcp has exponentially many constraints. MIPto has the smallest number of
constraints among the three MIP models. In the computational experiment, we use a
variation of the cutting plane algorithm for MIPcp as it has exponentially many constraints.
For MIPin and MIPto, we do not use a cutting plane algorithm.

3. Algorithms based on Topological Order

Although the MIP models introduced in Section 2 guarantee optimality, the execution time
for solving an integer programming problem can be exponential in problem size. Further,
the execution time could increase drastically in m, as all of the models require at least

6



www.manaraa.com

Bayesian Network Learning via Topological Order

Name Reference # binary variables # constraints

MIPcp (2) O(m2) exponential
MIPin (4) O(m2) O(m3)
MIPto (5) O(m2) O(m2)

Table 1: Number of binary variables and constraints of MIP models

O(m2) binary variables and O(m2) constraints. In order to deal with larger graphs, we
propose iterative algorithms for (1) based on Property 1. Observe that, if we are given a
topological order of the nodes, then Z and O are automatically determined in (5). In other
words, we can easily obtain a subset of the arcs such that all of the arcs can be used without
creating a cycle. Let R̄ be the determined adjacency matrix given topological order π̄. In
detail, we set

R̄jk = 1 if π̄j > π̄k, R̄jk = 0 otherwise.

Let adj(π̄) be the function generating R̄ given input topological order π̄. If we are given π̄,
then we can generate R̄ by adj(π̄), and solving (1) can be written as

min
Y

F (Y ) s.t. R̄ ≥ supp(Y ). (6)

Note that (6) has acyclic constraint R̄ ≥ supp(Y ), not R̄ = supp(Y ). The inequality is
needed when we try to obtain a sparse solution, i.e., only a subset of the arcs is selected
among all possible arcs implied by R̄. As long as we satisfy the inequality, Y forms an
acyclic subgraph. Hence, R̄ can be different from adjacency matrix supp(Y ) in an optimal
solution of (6), and any arc (j, k) such that R̄jk = 1 can be selected without creating a
cycle. For this reason, we call R̄ an adjacency candidate matrix. The algorithms proposed
later in this section solve (6) by providing different π̄ and R̄ = adj(π̄) in each iteration.
In fact, (6) is separable into m sub problems if F is separable. Let Yk and Zk be the kth

columns of Y and R, respectively, for node k. Then, solving

min
Yk

Fk(Yk) s.t. R̄k ≥ supp(Yk), (7)

for all k ∈ J gives the same solution as solving (6) if F is separable as F (Y ) =
∑

k∈J Fk(Yk).
In Section 3.1, a local improvement algorithm for a given topological order is presented.

The algorithm swaps pairs of nodes in the order. In both of the iterative algorithms proposed
in Sections 3.2 and 3.3, we use the local improvement algorithm presented in the following
section.

3.1 Topological Order Swapping Algorithm

Algorithm 1 tries to improve the solution by swapping the topological order. In each
iteration, the algorithm determines the nodes to swap that have order s1 and s2 in Line
3, where s2 = s1 + 1 implies that we select two nodes which are neighbors in the current
topological order. Then in Line 4, the actual node indices k1 and k2 such that πk1 = s1 and
πk2 = s2 are detected. The condition in Line 5 is to avoid meaningless computation when
Y ∗ is sparse. If |Y ∗k2k1

| > 0, we know for sure that Y ∗k2k1
= 0 after swapping the orders of

7



www.manaraa.com

Park and Klabjan

k1 and k2 and thus we will get a different solution. However, if Y ∗k2k1
= 0, we will still have

Y ∗k2k1
= 0 after the swap forced by the new order. In Line 6, we create a new topological

order π̄ by swapping nodes k1 and k2 in π∗. After obtaining adjacency candidate matrix R̄
in Line 7, we solve (6) with R̄. It is worth noting that, if F is separable, we only need to
solve (7) with k = k1 and k2 because the values of R̄ are the same with R∗ except for k1

and k2 as the order difference was 1 in π∗. In Line 9, we update the best solution if the
new solution is better. The iterations continue until there is no improvement in the past
m iterations, which implies that we would swap the same nodes if we proceed after this
iteration. Algorithm 1 is illustrated by the following toy example.

Algorithm 1 TOSA (Topological Order Swapping Algorithm)

Require: Y ′, R′, π′

Ensure: Best solution Y ∗, R∗, π∗

1: (Y ∗, R∗, π∗) ← (Y ′, R′, π′), t← 0
2: While there is an improvement in the past m iterations
3: t← t+ 1, s1 ← (t mod (m− 1)) + 1, s2 ← s1 + 1
4: (k1, k2)← node indices satisfying πk1 = s1 and πk2 = s2

5: If |Y ∗k2k1
| > 0 then

6: π̄ ← π∗, π̄k1 = s2, π̄k2 = s1

7: R̄← adj(π̄)
8: Ȳ ← solve (6) with R̄
9: If F (Ȳ ) < F (Y ∗) then update (Y ∗, R∗, π∗)

10: End if
11: End While

Example 1 Consider a graph with m = 4 nodes. Let us assume that inputs are π′ =
(2, 3, 1, 4) with corresponding order 3− 1− 2− 4,

Y ′ =


0 0 0.5 0
0 0 0.5 0
0 0 0 0

0.4 0.8 0.1 0

, and R′ =


0 0 1 0
0 0 1 0
0 0 0 0
1 1 1 0

 .
In iteration 1, t = 1, s1 = 1, s2 = 2, k1 = 3, and k2 = 1. Hence, we are swapping nodes 3
and 1. Since |Y ∗13| = 0.5 > 0, π̄ = (1, 3, 2, 4) is created in Line 6, where the associated order
is 1− 3− 2− 4. If π̄ gives an improved objective function value, then π∗ is updated in Line
9. Let us assume that π∗ is not updated. In iteration 2, t = 2, s1 = 2, s2 = 3, k1 = 1, and
k2 = 2. Since |Y ∗21| = 0, Lines 6 - 9 are not executed. �

3.2 Iterative Reorering Algorithm

We propose an iterative reordering algorithm based on Property 1, which solves (6) in each
iteration aiming to optimize (1). In each iteration of the algorithm, all nodes are sorted
based on scores defined by (i) merit scores of the arcs, (ii) historical choice of the arcs (used
as weights), (iii) and some random components. Then the sorted node order is directly

8



www.manaraa.com

Bayesian Network Learning via Topological Order

used as a topological order. The selected arcs by the topological order give updates on arc
weights. Let us first define notation.

ν = uniform random variable on [νlb, νub], νlb < 1 < νub
ρjk = pre-determined merit score of arc (j, k) for j ∈ J, k ∈ J
wjk = weight of arc (j, k) for j ∈ J, k ∈ J
ck = score of node k, k ∈ J

The range [νlb, νub] of the uniform random variable ν balances the randomness and struc-
tured scores. Note that ρjk should be determined based on the data and the characteristic
of the problem considered, where larger ρjk implies that arc (j, k) is attractive. Based on
the arc merit scores ρ, the score for node k, k ∈ J , is defined as

ck = ν ·
( ∑
j∈Jk

wjkρjk
)
, k ∈ J, (8)

which can be interpreted as a weighted summation of ρjk’s multiplied by perturbation
random number ν. Hence, nodes with high scores are attractive. Initially, all arcs have
equal weights and the weights are updated in each iteration based on the topological order
in the iteration. If R̄ = adj(π̄) is the adjacency candidate matrix in the iteration, then, the
weights are updated by

wjk = wjk + 1, if R̄jk = 1. (9)

The overall algorithmic framework is summarized in Algorithm 2. In Line 1, weights
wjk’s are initialized to 1 and t̄, which counts the number of iterations without a best
solution update, is initialized. Also, a random order π∗ of the nodes is generated, and the
corresponding solution becomes the best solution. In each iteration, first node scores ck’s
are calculated (Line 3), then topological order π̄ is obtained by sorting the nodes, and finally
adjacency candidate matrix R̄ is generated (Line 4). Then, in Lines 5 and 6, solution Ȳ is
obtained by solving (6) with R̄ and the best solution is updated if available. In Lines 7 -
10, TOSA is executed if the current solution is within a certain percentage α from the best
solution. Lines 11 and 12 update t̄, and Line 13 updates wjk’s. This ends the iteration and
the algorithm continues until π̄ is converged or there is no update of the best solution in
the last t∗ iterations. Algorithm 2 is illustrated by the following toy example.

Example 2 Consider a graph with m = 3 nodes. In the current iteration, let us assume
that we are given

ρ =

 0 0.5 0.5
0.2 0 0.2
0.3 0.3 0

 and w =

 0 1 2
1 0 1
2 1 0

.

Note that we have
∑

j∈J1 wj1ρj1 = 0.2 ·1+0.3 ·2 = 0.8,
∑

j∈J2 wj2ρj2 = 0.5 ·1+0.3 ·1 = 0.8,
and

∑
j∈J3 wj3ρj3 = 0.4 · 2 + 0.2 · 1 = 1. If random numbers (ν) are 0.9, 1.1, 0.8 for nodes

1,2, and 3, respectively, then by (8), c1 = 0.9 · 0.8 = 0.72, c2 = 1.1 · 0.8 = 0.88, and
c3 = 0.8 · 1 = 0.8. Then in Line 4, we obtain π̄ = (3, 1, 2), with corresponding order
2 − 3 − 1, and R̄ = [0, 1, 1; 0, 0, 0; 0, 1, 0]. After obtaining Ȳ and updating the best solution
in Lines 5-12, the weights are updated by (9) as follows.

9



www.manaraa.com

Park and Klabjan

Algorithm 2 IR (Iterative Reordering)

Require: Merit score ρ ∈ Rm×m, termination parameter t∗, TOSA execution parameter α
Ensure: Best solution Y ∗, R∗, π∗

1: wjk ← 1, π∗ ← a random order, R∗ ← adj(π∗), π̄ ← π∗, Y ∗ ← solve (6) with R∗, t̄← 0

2: While (i) π̄ is not convergent or (ii) t̄ < t∗

3: Calculate score ck by (8)
4: π̄ ← sort nodes with respect to ck, R̄← adj(π̄)
5: Ȳ ← solve (6) with R̄

6: If F (Ȳ ) < F (Y ∗) then update (Y ∗, R∗, π∗)

7: If F (Ȳ ) < F (Y ∗) · (1 + α)
8: (Y ′, R′, π′)← TOSA(Ȳ , R̄, π̄),
9: If F (Y ′) < F (Y ∗) then update (Y ∗, R∗, π∗)

10: End If

11: If (Y ∗, R∗, π∗) is updated then t̄← 0
12: Else t̄← t̄+ 1

13: Update weights by (9)
14: End While

wnew =

 0 1 2
1 0 1
2 1 0

+ R̄ =

 0 2 3
1 0 1
2 2 0


This ends the current iteration. �

3.3 Gradient Descent Algorithm

In this section, we propose a gradient descent algorithm based on Property 1. The algo-
rithm iteratively executes: (i) moving toward an improving direction by gradients, (ii) DAG
structure is recovered and topological order is obtained by a projection step. The algorithm
is based on the standard gradient descent framework while the projection step takes care
of the acyclicity constraints by generating a topological order from the current (possibly
cyclic) solution matrix. In order to distinguish the solutions with and without the acyclicity
property, we use the following notation.

U t ∈ Rm×m = decision variable matrix without acyclicity requirement in iteration t
Y t ∈ Rm×m = decision variable matrix satisfying G(supp(Y t)) ∈ A in iteration t

Let γt be the step size in iteration t, ∇F (Y t) be the derivative of F at Y t, and Gt ∈ Rm×m
be a weight matrix that weighs each element. We assume ‖∇F (Y t)‖∞ ≤M1 for a constant
M1, where ‖ · ‖∞ is the uniform (infinity) norm. The update formula

U t = Y t − γt
[
∇F (Y t) ◦Gt

]
, t ≥ 0, (10)

10



www.manaraa.com

Bayesian Network Learning via Topological Order

updates Y t based on the weighted gradient, where ◦ represents the entrywise or Hadamard
product of the two matrices. Given topological order πt, we define Gt as

Gtjk =
(

1 +
1

πtk

)πt
k
, j ∈ Jk (11)

to balance gradients of the nodes with different orders (small and large values of πtk). For
nodes k1 and k2 with πtk1

= 1 and πtk2
= m, most of the gradients for node k1 are zero and

most of the gradients for node k2 are nonzero. Weight (11) tries to adjust this gap. Note
that we have 2 ≤ Gtjk ≤ e for any large m. Since U t may not satisfy acyclic constraints, in
order to obtain a DAG, the algorithm needs to solve the projection problem

Y ∗ = argminY ‖Y − U t‖22 s.t. G(supp(Y )) ∈ A, (12)

where ‖ · ‖2 is the L2 norm.

Proposition 2 If U t is arbitrary, then optimization problem (12) is NP-hard.

Proof Recall that feedback arc set is NP-complete (Karp, 1972) and maximum acyclic
subgraph is the dual of the feedback arc set problem. With U t = 1, (12) becomes the
weighted maximum acyclic subgraph problem. Therefore, (12) is NP-complete.

Because solving (12) to optimality does not guarantee an optimal solution for (1), we
use a greedy strategy to solve (12). The greedy algorithm, presented in Algorithm 3,
sequentially determines and fixes the topological order of a node where in each iteration
the problem is solved optimally given the currently fixed nodes and corresponding orders.
The detailed derivations of the algorithm and the proof that each iteration is optimal, given
already fixed node orders, are available in Appendix 6. In other words, we show that Line 3
is ‘locally’ optimal, i.e., it selects the best next node given that the order q+ 1, q+ 2, · · · ,m
is fixed. In each iteration, in Line 3, the algorithm first calculates score

∑
j∈J̄(Ū tjk)

2 for

each node k in J̄ and picks node k∗ with the minimum value. Then, in Line 4, the order
of the selected node is fixed to q. The fixed node is then excluded from the active set J̄
and iterate q is decreased by 1 in Line 5. At the end of the algorithm, we can determine Ȳ
based on the order π̄ determined and (18) in Appendix 6. We illustrate Algorithm 3 by the
following example.

Example 3 Consider a graph with m = 3 nodes. Given U t, the algorithm returns Ȳ
presented in the following.

U t =

 0 1 2
4 0 2
5 2 0

 Ȳ =

 0 0 0
4 0 2
5 0 0


Algorithm 3 starts with q = 3 and J̄ = {1, 2, 3}. In iteration 1, node 2 is selected to have
π2 = 3 based on argmin{42 + 52, 12 + 22, 22 + 22}. Then, set J̄ and integer q are updated
to J̄ = {1, 3} and q = 2. In iteration 2, node 3 is selected to have π3 = 2 based on
argmin{52, 22}. Then, set J̄ and integer q are updated to J̄ = {1} and q = 1. In iteration
3, node 1 is selected. Hence, we have node order 1-3-2 and we obtain Ȳ presented above
with objective function value ‖Ȳ − U t‖22 = 12 + 22 + 22 = 9. �

11



www.manaraa.com

Park and Klabjan

Algorithm 3 Greedy

Require: U t ∈ Rm×m
Ensure: Ȳ feasible to (12), topological order π̄
1: q ← m, J̄ ← J
2: While J̄ 6= ∅
3: k∗ = argmink∈J̄

{∑
j∈J̄

(U tjk)
2
}

4: π̄k∗ = q
5: J̄ ← J̄ \ {k∗}, q ← q − 1
6: End While
7: Determine Ȳ by (18) in Appendix 6

The overall gradient descent algorithm for (1) is presented in Algorithm 4. In Line 1, the
algorithm generates a random order π∗ and obtain corresponding R∗ and Y ∗ and save them
as the best solution. In each iteration of the loop, Lines 3-6 follow the standard gradient
descent algorithm. The weighted gradient Ht is calculated in Line 3, and the step size is
determined in Line 4 based on the ratio between maxj∈Jk,k∈J |Ht

jk| and maxj∈Jk,k∈J |Y t
jk|.

In Line 5, the solution is updated based on the weighted gradient and, in Line 6, the greedy
algorithm is used to obtain the projected solution and the topological order. Observe that
we do not directly use the projected solution. This is because the projected solution is not
necessarily optimal given πt+1. Hence, in Line 7, a new solution Y t+1 is obtained based on
πt+1. In Lines 9 - 12, TOSA is executed if the current solution is within a certain percentage
from the current best solution. Lines 13 and 14 update t̄ and Line 15 copies Y ∗ to Y t+1 if
t̄ ≥ t∗2 in order to focus on the solution space near Y ∗. The algorithm continues until Y t is
convergent or t̄ ≥ t∗1.

In gradient based algorithms, it is common to have γt depend only on t, but in our case
dependency on Ht and Y t is justifiable since we multiply the gradient by Gt. We next show
the convergence of Y t in Algorithm 4 when t∗1 = t∗2 = ∞. This makes the algorithm not
to terminate unless Y t has converged and modification of Y t in Line 15 is not executed.
Further, we assume the following for the analysis.

Assumption 1 For any non-zero element Y t
jk, j, k ∈ J , of Y t in any iteration t, we assume

ε < |Y t
jk| < M2, where ε is a small positive number and M2 is a large enough number.

Note that Assumption 1 is a mild assumption, as ignoring near-zero values of Y t happens
in practice anyway due to finite precision. For notational convenience, let Lt = γt∇F (Y t) ◦
Gt = γtHt be the second term in (10). Then, U t can be written as U t = Y t−Lt = Y t−γtHt.
In the following lemma, we show that the node orders converge.

Lemma 3 If t is sufficiently large satisfying
√
t > (M1e)2

ε(
√
M2

2 +ε2/m−M2)
, then πt = πt+1.

Proof Recall that Y t is obtained by solving (20) and we know the corresponding node
order πt. Let k1, k2, · · · , km be the node indices defined based on πt. In other words, node k1

appears first, followed by nodes k2, k3, and so on in the topological order πt. In the proof, we

12



www.manaraa.com

Bayesian Network Learning via Topological Order

Algorithm 4 GD (Gradient Descent)

Require: Parameters t∗1 and t∗2, TOSA execution parameter α
Ensure: Best solution Y ∗, R∗, π∗

1: t← 1, t̄← 0, π∗ ← a random order, R∗ ← adj(π∗), Y ∗ ← solve (6) with R∗

2: While (i) Y t is not convergent or (ii) t̄ < t∗1
3: Ht ← ∇F (Y t) ◦Gt, Gt defined in (11)

4: γt ← ‖Ht‖∞
‖Y t‖∞

/√
t

5: U t ← Y t − γtHt

6: πt+1 ← Greedy(U t)
7: Y t+1 ← solve (6) with Rt+1 = adj(πt+1)
8: If F (Y t+1) < F (Y ∗) then (Y ∗, R∗, π∗)← (Y t+1, Rt+1, πt+1)

9: If F (Ȳ ) < F (Y ∗) · (1 + α)
10: (Y ′, R′, π′)← TOSA(Y t+1, Rt+1, πt),
11: If F (Y ′) < F (Y ∗) then (Y ∗, R∗, π∗) ← (Y ′, R′, π′), (Y t+1, Rt+1, πt+1) ←

(Y ′, R′, π′)
12: End If

13: If (Y ∗, R∗, π∗) is updated then t̄← 0
14: Else t̄← t̄+ 1

15: If t̄ ≥ t∗2 then Y t+1 ← Y ∗

16: t← t+ 1
17: End While

show that there is no change in the node order when the condition
√
t > (M1e)2

ε(
√
M2

2 +ε2/m−M2)

is met, where M1 and M2 are the upper bounds for ‖∇F (Y t)‖∞ and ‖Y t‖∞, respectively,
as assumed. We first derive

‖Lt‖∞ =
∥∥∥γtHt

∥∥∥
∞

=
∥∥∥ 1√

t

‖Ht‖∞
‖Y t‖∞

Ht
∥∥∥
∞
≤ 1√

t

(
‖Ht‖∞

)2
‖Y t‖∞

<
1√
t

(M1e)
2

ε
, (13)

where the last inequality holds since (i) ‖Y t‖∞ > ε by Assumption 1, (ii) ‖Ht‖∞ =
‖∇F (Y t) ◦ Gt‖∞ ≤ M1e because ‖∇F (Y t)‖∞ ≤ M1 by the assumption and ‖Gt‖∞ ≤ e,
where e is natural number.

Now let us consider q = q̄ in Algorithm 3 to decide node order q̄ in iteration t + 1
and assume πtkr = πt+1

kr
for r = m,m − 1, · · · , q̄ − 1. Note that we currently have J̄ =

{k1, k2, · · · , kq̄}.

1. For kq̄, we derive
∑

j∈J̄(U tjkq̄)2 =
∑

j∈J̄(Y t
jkq̄
− Ltjkq̄)2 =

∑
j∈J̄(Ltjkq̄)2 < m

[ (M1e)2
√
tε

]2
,

where the second equality holds since Y t
jkq̄

= 0 for all j ∈ J̄ since πkq̄ = q̄ and no arc

can be used to the nodes in J̄ , and the last inequality holds due to (13) and |J̄ | ≤ m.

2. For all other nodes kr ∈ J̄ \ {kq̄}, we derive

13



www.manaraa.com

Park and Klabjan

∑
j∈J̄(U tjkr)2 =

∑
j∈J̄(Y t

jkr
− Ltjkr)2

=
∑

j∈J̄(Y t
jkr

)2 +
∑

j∈J̄(Ltjkr)2 − 2
∑

j∈J̄ Y
t
jkr
· Ltjkr

>
∑

j∈J̄(Y t
jkr

)2 − 2
∑

j∈J̄ Y
t
jkr
· Ltjkr

> ε2 − 2
∑

j∈J̄ Y
t
jkr
· Ltjkr

≥ ε2 − 2
∑

j∈J̄ |Y t
jkm
· Ltjkr |

> ε2 − 2M2
m(M1e)2
√
tε

where the fourth line holds due to |Y t
jkr
| > ε by Assumption 1, and the sixth line

holds due to |Y t
jk| ≤M2, |J̄ | ≤ m, and |Ltjkr | <

(M1e)2
√
tε

by (13).

Combining the two results for kq̄ and kr ∈ J̄ \{kq̄}, we obtain
∑

j∈J̄(U tjkq̄)2 < m
[ (M1e)2
√
tε

]2
<

ε2 − 2M2
m(M1e)2
√
tε

<
∑

j∈J̄(U tjkr)2, for any r ∈ {1, 2, · · · , q̄− 1}, where the second inequality

holds due to the condition
√
t > (M1e)2

ε(
√
M2

2 +ε2/m−M2)
. The result implies that we must have

πt+1
kq̄

= πtkq̄ = q̄ by Line 3 in Algorithm 3.

Note that, when q̄ = m, we have J = J̄ and the assumption of πtkr = πt+1
kr

for
r = m,m − 1, · · · , q̄ − 1 automatically holds. By iteratively applying the above deriva-
tion technique from q = m to 1, we can show that πt = πt+1.

When (6) is solved with the identical node orders, the resulting solutions are equivalent.
Hence, the following proposition holds.

Proposition 4 In Algorithm 4, Y t converges in t.

4. Estimation of Gaussian Bayesian Networks

In this section, we introduce the Gaussian Bayesian network learning problem, which follows
the form of (1). The goal is to learn or estimate unknown structure between the nodes of a
graph, where the error is normally distributed. The network can be estimated by optimizing
a score function, testing conditional independence, or a mix of the two, as described in
Section 1. Among the three categories, we select the score based approach with the L1-
penalized least square function recently studied in Han et al. (2016).

Let X ∈ Rn×m be a data set with n observations and m features. Let I = {1, · · · , n}
and J = {1, · · · ,m} be the index set of observations and features, respectively. For each
k ∈ J , we build a regression model in order to explain feature k using a subset of variables
in Jk. In other words, we set feature k as the response variable and a sparse subset of Jk

as explanatory variables of the regression model for variable k. In order to obtain a subset
of Jk, the LASSO penalty function is added. Considering regression models for all k ∈ J
together, the problem can be represented on a graph. Each feature is a node in the graph,
and the directed arc from node j to node k represents explanatory and response variable
relationship between node j and k. The goal is to minimize the sum of penalized SSE over
all regression models for k ∈ J , while the selected arcs do not create a cycle.

14



www.manaraa.com

Bayesian Network Learning via Topological Order

Let βjk, j ∈ Jk, k ∈ J , be the coefficient of attribute j for dependent variable k. Then
the problem can be written as

min
β

1

n

∑
k∈J

∑
i∈I

(xik −
∑
j∈Jk

βjkxij)
2 + λ

∑
k∈J

∑
j∈Jk

|βjk| s.t. G(supp(β)) ∈ A, (14)

which follows the form of (1). In Han et al. (2016), individual weights are used for the
penalty term, i.e., λ

∑
k∈J

∑
j∈Jk wjk|βjk|, however, in the computational experiment, we

set all weights equal to 1 for simplicity.

Let Zjk = 1 if attribute j is used for dependent variable k and Zjk = 0 otherwise. Then,
we can formulate MIPto for (14) as

min
1

n

∑
k∈J

∑
i∈I

(xik −
∑
j∈Jk

βjkxij)
2 + λ

∑
k∈J

∑
j∈Jk

|βjk| (15a)

s.t. |βjk| ≤MZjk, j ∈ Jk, k ∈ J, (15b)

Zjk −mZkj ≤
∑
r∈J

r(Okr −Ojr), j ∈ Jk, k ∈ J, (15c)

Zjk + Zkj ≤ 1, j ∈ Jk, k ∈ J, (15d)∑
q∈J

Okq = 1, k ∈ J, (15e)

∑
k∈J

Okq = 1, q ∈ J, (15f)

Z,O ∈ {0, 1}m×m, (15g)

βjk not restricted, j ∈ Jk ∪ {0}, k ∈ J, (15h)

where M is a large constant. Note that (15b) is the linear constraint corresponding to
Z = supp(Y ) in (5). Similarly, (15a), (15b), (4c) - (4e) and (15h) can be used to formulate
MIPin for (14). For MIPcp, (15a), (15b), (15h), and the constraints in (2) can be used for
(14).

Note that M in (15b) plays an important role in computational efficiency and optimality.
If M is too small, the MIP model cannot guarantee optimality. If M is too large, the solution
time can be as large as enumeration. The algorithm for getting a valid value for M in Park
and Klabjan (2013) can be used. However, the valid value of big M for multiple linear
regression is often too large (Park and Klabjan, 2013). For (15), we observed that a simple
heuristic presented in Section 5 works well.

In each iteration of IR (Algorithm 2) and GD (Algorithm 4), we are given topological
order π̄ and matrix R̄ = adj(π̄). Let Sk = {j ∈ Jk|R̄jk = 1} be the set of selected
candidate arcs for dependent variable k. Given fixed R̄, (14) is separable into m LASSO
linear regression problems

min
1

n

∑
i∈I

(xik −
∑
j∈Sk

βjkxij)
2 + λ

∑
j∈Sk

|βjk|, k ∈ J. (16)

15



www.manaraa.com

Park and Klabjan

5. Computational Experiment

For all computational experiments, a server with two Xeon 2.70GHz CPUs and 24GB RAM
is used. Although there are many papers studying Bayesian network learning with various
error measures and penalties, here we focus on minimizing the LASSO type objective (SSE
and penalty) and we picked one of the latest paper of Han et al. (2016) with the same
objective function as a benchmark.

The MIP models MIPcp, MIPin, and MIPto are implemented with CPLEX 12.6 in C#.
For MIPcp, instead of implementing the original cutting plane algorithm, we use CPLEX
Lazy Callback, which is similar to the cutting plane algorithm. Instead of solving (3) to
optimally from scratch in each iteration, we solve (2) with Lazy Callback, which allows
updating (adding) constraints (cycle prevention constraints) in the process of the branch
and bound algorithm whenever an integer solution with cycles is found. Given a solution
with the cycles, we detect all cycles and add cycle prevention constraints for the detected
cycles.

For MIPcp, MIPin, and MIPto, we set big M as follows. Given λ, we solve (14) without
acyclic constraints. Hence, we are allowed to use all arcs in Jk for each model k ∈ J . Then,
we obtain the estimated upper bound for big M by

M = 2
(

max
j∈Jk,k∈J

|βjk|
)
. (17)

We observed that the above formula gives large enough big M for all cases in the following
experiment. In Appendix 6, we present comparison of regression coefficients of implanted
network (DAG) with big M values by (17). The result shows that the big M value in (17)
is always valid for all cases considered.

We compare our algorithms and models with the algorithm in Han et al. (2016), which
we denote as DIST here. Their algorithm starts with neighborhood selection (NS), which
filters unattractive arcs and removes them from consideration. The procedure is specifi-
cally developed for high dimensional variable selection when m is much larger than n. In
our experiment, many instances considered are not high dimensional and some have dense
solutions. Further, by filtering arcs, there exists a probability that an arc in the optimal
solution can be removed. Hence, we deactivated the neighborhood selection step of their
original algorithm, where the R script of the original algorithm is available on the journal
website.

For GD and IR, the algorithms are written in R (R Core Team, 2016). We use glmnet
package (Friedman et al., 2010) function glmnet for solving LASSO linear regression prob-
lems in (16). For IR, we use parameters α = 0.01, t∗ = 10, νlb = 0.8, and νub = 1.2. For
GD, we use parameters α = 0.01, t∗1 = 10, and t∗2 = 5. Because both GD and IR start with
a random solution, they perform different with different random solutions. Further, since
we observe that the execution time of GD and IR are much faster than DIST, we decided to
run GD and IR with 10 different random seeds and report the best solution. To emphasize
the number of different random seeds for GD and IR, we use the notation GD10 and IR10 in
the rest of the section.

We first test all algorithms with synthetic instances generated using R package pcalg
(Kalisch et al., 2012). Function randomDAG is used to generate a DAG and function rmvDAG
is used to generate multivariate data with the standard normal error distribution. First,

16



www.manaraa.com

Bayesian Network Learning via Topological Order

a DAG is generated by randomDAG function. Next, the generated DAG and random co-
efficients are used to create each column (with standard normal error added) by rmvDAG
function which uses linear regression as the underlying model. After obtaining the data
matrix from the package, we standardize each column to have zero mean with standard de-
viation equal to one. The DAG used to generate the multivariate data is considered as the
true structure or true arc set while it may not be the optimal solution for the score function.
The random instances are generated for various parameters described in the following.

m: number of features (nodes)
n: number of observations
s: expected number of true arcs per node
d: expected density of the adjacency matrix of the true arcs

By changing the ranges of the above parameters, three classes of random instances are
generated.

Sparse data sets: The expected total number of true arcs is controlled by s and
most of the instances have a sparse true arc set. We use n ∈ {100, 200, 300}, m ∈
{20, 30, 40, 50}, and s ∈ {1, 2, 3} to generate 10 instances for each (n,m, s) triplet.
This yields a total of 360 random instances.

Dense data sets: The expected total number of true arcs is controlled by d and most
of the instances have a dense true arc set compared with the sparse data sets. We
use n ∈ {100, 200, 300}, m ∈ {20, 30, 40, 50}, and d ∈ {0.1, 0.2, 0.3} to generate 10
instances for each (n,m, d) triplet, and thus we have a total of 360 random instances.
High dimensional data sets: The instances are high dimensional (m ≥ n) and very
sparse. The expected total number of true arcs is controlled by s. We use n = 100
and m ∈ {100, 150, 200}, and s ∈ {0.5, 1, 1.5} to generate 10 instances for each (m, s)
pair, which yields a total of 90 random instances.

We use four λ values differently defined for each data set in order to cover the expected
number of arcs with the four λ values. For each sparse instance, we solve (14) with λ ∈
{1, 0.5, 0.1, 0.05}. For dense data sets, a wide range of λ values are needed to obtain selected
arc sets that have similar cardinalities with the true arc sets. Hence, for each dense instance,
instead of fixed values over all instances in the set, we use λ values based on expected density
d: λ = λ0 · 10−(10·d−1), where λ0 ∈ {1, 0.1, 0.01, 0.001}. For each high dimensional instance,
we use λ ∈ {1, 0.8, 0.6, 0.4}. Observe that the expected densities of the adjacency matrices
vary across the three data sets. The sparse instances have expected densities between 0.02
and 0.15, the dense instances have expected densities between 0.1 and 0.3, and the high
dimensional instances have expected densities between 0.002 and 0.015. Hence, different
ranges of λ values are necessary.

For all of the results presented in this section, we present the average performance by
n,m, s, d and λ. For example, the result for n = 100 and m = 20 are the averages of 120
and 90 instances, respectively. In all of the comparisons, we use the following metrics.

time: computation time in seconds
δsol: relative gap (%) from the best objective value among the compared algorithms
or models. For example, if we compare the three MIP models, δsol of an MIP model is

17



www.manaraa.com

Park and Klabjan

the relative gap from the best of the three objective function values obtained by the
MIP models.
‖z‖0: number of arcs selected (number of nonzero regression coefficients βjk’s)

In comparing the performance metrics, we use plot matrices. In each Figure 1, 2, 3,
5, and 6, multiple bar plots form a matrix. The rows of the plot matrix correspond to
performance metrics and the columns stand for parameters used for result aggregation. For
example, the left top plot in Figure 1 shows execution times of the algorithms where the
results are aggregated by n (the number of observations), because the first row and first
column of the plot matrix in Figure 1 are for execution times and n, respectively.

In Section 5.1, we compare the performance of iterative algorithms GD10 and IR10 and
the benchmark algorithm DIST. In Section 5.2, we compare the performance of MIP models
MIPcp, MIPin, and MIPto. We also compare all models and algorithms with a subset of the
synthetic instances in Section 5.2. Finally, in Section 5.4, we solve a popular real instance
of Sachs et al. (2005) in the literature.

5.1 Comparison of Iterative Algorithms

In this section, we compare the performance of GD10, IR10, and DIST by time, δsol, and
‖z‖0 for each of the three data sets.

In Figure 1, the result for the sparse data sets is presented. The bar plot matrix presents
the performance measures aggregated by n,m, s, and λ.

By m (# nodes) By s (# arcs per node) By λ (penalty)

Ti
m

e 
(s

e
co

n
d

s)

GD10 IR10 DIST

By n (# obs)

0

50

100

150

100 200 300

0

50

100

150

20 30 40 50

0

50

100

150

0.05 0.1 0.5 1

0

50

100

150

1 2 3

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

100 200 300

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

20 30 40 50

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

0.05 0.1 0.5 1

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1 2 3

0

100

200

300

400

100 200 300

0

100

200

300

400

20 30 40 50

0

100

200

300

400

0.05 0.1 0.5 1

0

100

200

300

400

1 2 3

𝛿𝑠𝑜𝑙

𝑧 0

Figure 1: Performance of GD10, IR10, and DIST (sparse data)

18



www.manaraa.com

Bayesian Network Learning via Topological Order

The computation time of all three algorithms increases in increasing m and decreasing λ,
where the computation time of DIST increases faster than the other two. The computation
time of DIST is approximately 10 times faster than the GD10 time when λ = 1, but 2 times
slower when λ = 0.05. With increasing n, the computation times of all algorithms stay
the same or decrease. This can be seen counter-intuitive because larger instances do not
increase time. However, a larger number of observations can make predictions more accurate
and could reduce search time for unattractive subsets. Especially, the computation time
of DIST decreases in increasing n. We think this is because more observations give better
local selection in the algorithm when adding and removing arcs. The number of selected
arcs (‖z‖0) of GD10 and IR10 is greater than DIST for all cases because the topological

order based algorithms are capable of using the maximum number of arcs
(
m(m−1)

2

)
, while

arc selection based algorithms, such as DIST, are struggling to select many arcs without
violating acyclic constraints. In terms of the solution quality, all algorithms have δsol less
than 1.2% and perform good. However, we observe several trends. As λ decreases (required
to select more arcs), GD10 and IR10 start to outperform. We also observe that, as the
problem requires to select more arcs (increasing m, increasing s, and decreasing λ), GD10
and IR10 perform better. As n increases, δsol of GD10 and DIST decrease, whereas δsol of
IR10 increases.

The result for the dense data sets is presented in Figure 2. The bar plot matrix presents
the performance measures aggregated by n,m, d, and λ0. Recall that, for the dense data
set, we solve (14) with λ = λ0 · 10−(10·d−1) and λ0 ∈ {1, 0.1, 0.01, 0.001}. For simplicity of
presenting the aggregated result, we use λ0 in the plot matrix, while λ values are used for
actual computation.

The computation time of all three algorithms again increases in increasing m and de-
creasing λ, where the computation time of DIST increases faster than the other two. Com-
pare to the result for the sparse data sets, the execution times are all larger for the dense
data set. The number of selected arcs (‖z‖0) of GD10 and IR10 is again greater than DIST
for all cases, where ‖z‖0 is twice larger for GD10 and IR10 when m or d is large, or λ is
small. In terms of the solution quality, GD10 and IR10 outperform in most of the cases,
while δsol values of DIST increase fast in changing m, d, and λ. The values of δsol for all
algorithms are larger than the sparse data sets result. GD10 and IR10 are better for most
of the cases. In general, we again observe that GD10 and IR10 perform better when the
problem requires to select more arcs.

The result for the high dimensional data sets is presented in Figure 3. The bar plot
matrix presents the performance measures aggregated by m, s, and λ, while n is excluded
from the matrix as we fixed n to 100.

The computation time of all three algorithms again increases in increasing m and de-
creasing λ. However, unlike the previous two sets, the computation times of GD10 and
IR10 increase faster than DIST. This is due to the efficiency of the topological order based
algorithms. When a very small portion of the arcs should be selected in the solution, topo-
logical orders are not informative. For example, consider a graph with three nodes A,B,C
and assume that only one arc, (A,B), is selected due to a large penalty. For this case, three
topological orders A−B−C, A−C−B, and C−A−B can represent the selected arc. The
third row of Figure 3 shows that ‖z‖0 of the three algorithms are very similar, while DIST
has much smaller values for the previous two data sets. This implies that arc based search

19



www.manaraa.com

Park and Klabjan

By m (# nodes) By d (density of solution matrix) By λ0 (penalty)

Ti
m

e 
(s

ec
o

n
d

s)

GD10 IR10 DIST

By n (# obs)

0

200

400

600

800

100 200 300

0

200

400

600

800

20 30 40 50

0

200

400

600

800

0.001 0.01 0.1 1

0

200

400

600

800

0.1 0.2 0.3

0.51% 0.46% 0.49%

0.47% 0.26% 0.32%

0%

10%

20%

30%

40%

50%

100 200 300

0.20% 0.40% 0.59% 0.75%

0.06% 0.15% 0.72% 0.47%

0%

10%

20%

30%

40%

50%

20 30 40 50

0.39% 0.56% 0.63% 0.37%

0.49% 0.47% 0.33% 0.12%

0.57%

0%

10%

20%

30%

40%

50%

0.001 0.01 0.1 1

0.85% 0.47% 0.15%

0.08% 0.38% 0.59%

0%

10%

20%

30%

40%

50%

0.1 0.2 0.3

0

100

200

300

400

500

600

100 200 300
0

100

200

300

400

500

600

20 30 40 50

0

100

200

300

400

500

600

0.001 0.01 0.1 1
0

100

200

300

400

500

600

0.1 0.2 0.3

𝛿𝑠𝑜𝑙

𝑧 0

Figure 2: Performance of GD10, IR10, and DIST (dense data)

by DIST does not have difficulties preventing cycles and the algorithm can decide whether
to include arcs easier. The comparison of δsol values also show that arc based search is
competitive. Although all algorithms have δsol values less than 0.5%, we find clear evidence
that the performance of IR10 decreases in increasing m and s and decreasing λ. Although
the δsol values of GD10 and DIST are similar, considering the fast computing time of DIST,
we recommend to use DIST for very sparse high dimensional data.

In Figure 4, we present combined results of all three data sets by relating solution
densities and δsol. Observe that, for each quadruplet of n,m, s(or d), λ, we have results
from 10 random instances for each algorithm. Value δsol is the average of the 10 results for
each quadruplet and for each algorithm, AvgDen is the average density of the adjacency
matrices of the 10 results and the three algorithms. In Figure 4, we present a scatter plot of
ln(1+AvgDen) and ln(1+100·δsol). Each point in the plot is the average of 10 results by an
algorithm and each algorithm has 324 points displayed 1. The numbers in the parenthesis
along the axes are the corresponding values of δsol and AvgDen. In the plot, we first observe
that the algorithms perform similarly when the solutions are sparse and the δsol values have
large variance when the solutions are dense. When the log transformed solution density is
less than 2, the average δsol values of GD10, IR10, and DIST are 0.06%, 0.15%, and 0.04%,
respectively. However, the solution quality of DIST drastically decreases as the solutions
become denser. This makes sense because sparse solutions can be efficiently searched by

1. 324 = (3 · 4 · 3 · 4) + (3 · 4 · 3 · 4) + (1 · 3 · 3 · 4), where the three terms are for the three data sets and each
term is obtained by multiplying the number of parameters n,m, s(d), and λ, respectively.

20



www.manaraa.com

Bayesian Network Learning via Topological Order

By m (# nodes) By s (# arcs per node) By λ (penalty)

𝛿𝑠𝑜𝑙

Ti
m

e 
(s

ec
o

n
d

s)

0

100

200

300

400

500

600

100 150 200

0

100

200

300

400

500

600

0.4 0.6 0.8 1

0

100

200

300

400

500

600

0.5 1 1.5

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

100 150 200

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.4 0.6 0.8 1

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.5 1 1.5

0

100

200

300

400

100 150 200

0

100

200

300

400

0.4 0.6 0.8 1

0

100

200

300

400

0.5 1 1.5

𝑧 0

GD10 IR10 DIST

Figure 3: Performance of GD10, IR10, and DIST (high dimensional data)

arc-based search, while dense solutions are not easy to obtain by adding or removing arcs
one by one. This also explains the relatively small and large δsol values for dense and spares
solutions, respectively, by the topological order based algorithms. Between GD10 and IR10,
we do not observe a big difference.

5.2 Comparison of MIP Models

In this section, we compare the performance of MIPto, MIPin, and MIPcp using time, δsol,
and ‖z‖0 and the following additional metric.

δIP: the optimality gap (%) obtained by CPLEX within allowed 15 ·m seconds

Due to scalability issues of all models, we only use the sparse data with m = 20, 30, 40.
We also limit n = 100. For all instances, we use the 15 ·m seconds time limit for CPLEX.
For example, we have a time limit of 300 seconds for instances with m = 20.

The result is presented in Figure 5. Comparing the time of all models with the time
limit for CPLEX, we observe that MIPin and MIPcp were able to terminate with optimality
for several instances when m = 20 and λ = 1. This implies that MIPin and MIPcp are
efficient when the problem is small and the number of selected arcs ‖z‖0 is small. However,
in general, δIP values tend to be consistent with different models, while they increase in
increasing m and s and in decreasing λ for all three MIP models. The execution times of
all models increase in increasing m and s, and in decreasing λ. The same trend can be

21



www.manaraa.com

Park and Klabjan

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4

L
o

g
 t

ra
n

sf
o

rm
ed

 δ
so

l

Log transformed average subgraph density

GD10 IR10 DIST

(1.7%)

(6.4%)

(19.1%)

(53.6%)

(147.4%)

(0.54)(0.32)(0.19)(0.11)(0.064)(0.035)(0.017)(0.006)

Figure 4: Scatter plot of δsol and average solution densities

found for δIP for all models. By comparing δsol values, we observe that MIPin is best when
m = 20 and 30. However, the performance of MIPin drops drastically as m and s increase
and λ decreases. Actually, MIPin fails to obtain a reasonably good solution within the time
limit for several instances. This gives large δsol values and increases the average. The δsol

values of MIPto are smaller than MIPcp when m and s are small, while MIPcp outperforms
when m = 40 or s = 3.

5.3 Comparison of all MIP Models and Algorithms

In Figure 6, we compare all models and algorithms for selected sparse instances with n = 100
and m ∈ {20, 30, 40}, which were used to test MIP models. In the plot matrix, we show
the average computation time and δsol (gap from the best objective value among the six
models and algorithms) by m, s, and λ. Note that δsol values of a few MIPin results are not
fully displayed in the bar plots due to their large values. Instead, the actual numbers are
displayed next to the corresponding bar. The result shows that MIP models spent more
time while the solution qualities are inferior in general. The values of δsol for the MIP models
are competitive only when λ is large, which requires sparse solution. However, even for this
case, MIP models spend longer time than the algorithms. Hence, ignoring the benefit of
knowing and guaranteeing optimality by the MIP models, we conclude that the algorithms
perform better for all cases.

The primary reason for the inferior performance of the MIP models is the difficulty of
solving integer programming problems. Further, all of the MIP models have at least O(m2)
binary variables and O(m2) constraints and the problem complexity grows fast. Finally,
large values of big M in (15b) make the problem even more difficult. Due to non-tight
values of big M, fathoming does not happen frequently in the branch and bound procedure.
Hence, at least for sparse Gaussian Bayesian network learning, the MIP models may not
be the best option unless other complicated constraints, which cannot be easily dealt with
iterative algorithms, are needed.

22



www.manaraa.com

Bayesian Network Learning via Topological Order

By m (# nodes) By s (# arcs per node) By λ (penalty)

MIPto MIPin MIPcp

0%

5%

10%

15%

20%

25%

30%

20 30 40

0%

5%

10%

15%

20%

25%

30%

0.05 0.1 0.5 1

0%

5%

10%

15%

20%

25%

30%

1 2 3

0%

2%

4%

6%

8%

20 30 40

0%

2%

4%

6%

8%

1 2 3

0%

2%

4%

6%

8%

0.05 0.1 0.5 1

𝛿𝑠𝑜𝑙

𝛿𝐼𝑃

0

100

200

300

400

500

600

20 30 40
0

100

200

300

400

500

600

1 2 3

0

100

200

300

400

500

600

0.05 0.1 0.5 1

Ti
m

e 
(s

ec
o

n
d

s)

Figure 5: Performance of MIPto, MIPin, and MIPcp (sparse data with n = 100 and m ∈
{20, 30, 40})

5.4 Real Data Example

In this section, we study the flow cytometry data set from Sachs et al. (2005) by solving
(14). The data set has been studied in many works including Friedman et al. (2008), Shojaie
and Michailidis (2010), Fu and Zhou (2013), and Aragam and Zhou (2015). The data set
is often used as a benchmark as the casual relationships (underlying DAG) are known. It
has n = 7466 cells obtained from multiple experiments with m = 11 measurements. The
known structure contains 20 arcs. For the experiment, we standardize each column to have
zero mean with standard deviation equal to one.

In Table 2, we compare the performance of the three algorithms GD10, IR10, and DIST
for various values of λ. The MIP models are excluded due to scalability issue 2. We compare
the previously used performance measures execution time, solution cardinalities (‖z‖0), and
solution quality (δsol). In addition, we also compare sensitivities (true positive ratio) of the
solutions. By comparing with the known structure with 20 arcs, we calculate directed true

2. Although m is small, with n =7466 observations, the MIP models have at least 7466 · 11 · 2 = 164,252
continuous variables and 7466 · 11 = 82,126 constraints just for the residual terms. Combined with the
complexity increment due to the binary variables and acyclicity constraints, it was not feasible to obtain
a reasonable solution by any of the MIP models.

23



www.manaraa.com

Park and Klabjan

By m (# nodes) By s (# arcs per node) By λ (penalty)

Ti
m

e 
(s

ec
o

n
d

s)

GD10 IR10 DIST

0.0%

1.0%

2.0%

3.0%

4.0%

20 30 40

0.0%

1.0%

2.0%

3.0%

4.0%

1 2 3

0.0%

1.0%

2.0%

3.0%

4.0%

0.05 0.1 0.5 1

0

100

200

300

400

500

600

700

20 30 40

0

100

200

300

400

500

600

700

1 2 3

0

100

200

300

400

500

600

700

0.05 0.1 0.5 1

MIPto MIPin MIPcp

9.2% 7.8% 9.0%≈ ≈ ≈

𝛿𝑠𝑜𝑙

Figure 6: Performance of all models and algorithms (sparse data with n = 100 and m ∈
{20, 30, 40})

positive (dTP) and undirected true positive (uTP). If arc (j, k) is in the known structure,
dTP counts only if arc (j, k) is in the algorithm’s solution, whereas uTP counts either of
arcs (j, k) or (k, j) is in the algorithm’s solution.

The solution times of the three algorithms are all within a few seconds, as m is small.
Also, the solution cardinalities (‖z‖0) are similar. The best δsol value among the three
algorithms in each row is in boldface. We observe that GD10 provides the best solution
(smallest δsol) in most cases and IR10 is the second best. The δsol values of DIST increase
as λ increases. This is consistent with the findings in Section 5.1. Note that the density
of the underlying structure is 20/112 = 0.165, which is dense. This explains the good
performance of GD10 and IR10. On the other hand, even though GD10 provides the best
objective function values for most of the cases, the dTP and uTP values of GD10 are not
always the best. The highest value among the three algorithms in each row is in boldface.
While δsol values of DIST are the largest among the three algorithms, dTP and uTP values
are the best in some cases. When λ is small, DIST tends to have higher dTP and uTP.
However, as λ increases, GD10 gives the best dTP and uTP values. To further improve the
prediction power, we may need weighting features or observations.

From Table 2, we observe that a slight change in solution quality δsol affects the final
selection of DAG significantly. Also, the best objective function value does not necessarily
give the highest true positive value since the L1-norm penalized least square (14) may not
be the best score function. In Figure 7, we present the graphs of known casual interactions
(a), estimated subgraph by GD10 (b), IR10 (c), and DIST (d). All graphs are obtained with
λ = 0.25, but the numbers of arcs are different (see Table 2). In fact, the difference between
δsol values of IR10 and DIST is less than 1% while the subgraphs have only 10 common arcs.

24



www.manaraa.com

Bayesian Network Learning via Topological Order

GD10 IR10 DIST
λ time ‖z‖0 δsol dTP uTP time ‖z‖0 δsol dTP uTP time ‖z‖0 δsol dTP uTP

0.5 14.6 9 0.00% 0.22 0.56 10.8 9 0.22% 0.22 0.56 5.8 9 0.38% 0.56 0.56
0.45 13.7 11 0.00% 0.27 0.55 10.9 13 0.30% 0.15 0.46 8.5 9 0.49% 0.56 0.56
0.4 14.3 11 0.00% 0.27 0.55 14.8 13 0.36% 0.15 0.46 7.0 13 0.61% 0.38 0.46
0.35 16.0 13 0.00% 0.23 0.54 12.4 17 0.42% 0.12 0.41 8.6 15 0.73% 0.33 0.47
0.3 15.1 13 0.00% 0.23 0.46 14.3 17 0.21% 0.24 0.41 8.0 17 0.84% 0.29 0.47
0.25 14.4 16 0.00% 0.38 0.56 14.8 20 0.22% 0.25 0.50 6.7 20 0.94% 0.30 0.50
0.2 16.0 16 0.00% 0.31 0.56 14.6 22 0.31% 0.32 0.55 6.8 21 1.12% 0.33 0.52
0.15 16.4 21 0.00% 0.33 0.57 15.6 25 0.32% 0.32 0.52 9.5 23 1.26% 0.30 0.52
0.1 17.4 24 0.00% 0.25 0.50 11.0 28 0.26% 0.07 0.43 9.1 27 1.45% 0.26 0.44
0.05 17.7 28 0.32% 0.39 0.50 11.5 30 0.00% 0.10 0.47 10.1 32 1.87% 0.22 0.41

Table 2: Performance on the real data set from Sachs et al. (2005)

(a) (b) (c) (d)

Figure 7: Known DAG (a) and estimated subgraphs with λ = 0.25 by GD10 (b), IR10 (c),
and DIST (d)

6. Conclusion

We propose an MIP model and iterative algorithms based on topological order. Although
the computational experiment is conducted for Gaussian Bayesian network learning, all the
proposed model and algorithms are applicable for problems following the form in (1). While
many MIP models and algorithms are designed based on arc search, using topological order
provides some advantages that improve solution quality and algorithm efficiency.

1. DAG constraints (acyclicity constraints) are automatically satisfied when arcs from
high order nodes to low order nodes are used.

2. In applying the concept for MIP, a lower number of constraints is needed (O(m2))
whereas arc based modeling can have exponentially many constraints in the worst
case.

3. In applying the concept in designing iterative algorithms, one of the biggest merits is
the capability of utilizing the maximum number of arcs possible (m(m−1)

2 ), while arc
based algorithms struggle with using all possible arcs.

The proposed MIP model has the smallest number of constraints while the number of
binary variables is in the same order with the already known MIP models. It performs
as good as a cutting plane algorithm. The proposed iterative algorithms get the biggest

25



www.manaraa.com

Park and Klabjan

benefit when the solution matrix is dense. The result presented in Section 5.1 clearly
indicates that the topological order based algorithms outperform when the density of the
resulting solution is high. On the other hand, arc-based search algorithms, represented by
DIST in our experiment, can be efficient when the desired solutions are very sparse.

Comparing all models and algorithms used in the experiment, we observe that the MIP
models are not competitive or scale well compared to the heuristic algorithms except for
small instances. The experiment shows that the solution times of the MIP models are
significantly affected by the number of nodes m. For Gaussian Bayesian network learning,
we observe that large n could also decrease the MIP model efficiency even when m is small
(Section 5.4). Among the iterative algorithms, we recommend DIST for very sparse high
dimensional data and GD10 and IR10 for dense data. Among the two topological order
based algorithms, GD10 performs slightly better and is more stable.

26



www.manaraa.com

Bayesian Network Learning via Topological Order

Appendix A. Greedy Algorithm for Projection Problem

In this section, we present the detail derivations and proofs of Algorithm 3 (greedy). The
algorithm sequentially determines topological order by optimizing the projection problem
given an already fixed order up to the iteration point. Solving the projection problem is
NP-complete and our algorithm may not give a global optimal solution. However, the
result of this section shows that Algorithm 3 gives an optimal choice of the next node to
have fixed order given pre-fixed orders.

We start by describing some properties of Y ∗ in the following three lemmas. For the
following lemmas, let π∗j represent the topological order of node j defined by Y ∗.

Lemma 5 For any Y ∗jk, we must have either Y ∗jk = 0 or Y ∗jk = U tjk.

Proof For a contradiction, let us assume that there exist indices q and r such that Y ∗qr 6= 0
and Y ∗qr 6= U tqr. Let us create a new solution Ȳ such that Ȳ = Y ∗ except Ȳqr = U tqr.
Note that Ȳ is a feasible solution to (12) because supp(Ȳ ) ≤ supp(Y ∗) element-wise since
Y ∗qr 6= 0. Further, we have ‖Y ∗−U t‖2 > ‖Ȳ −U t‖2 because (Y ∗qr−U tqr)2 > 0 = (Ȳqr−U tqr)2

and Ȳ = Y ∗ except Y ∗qr 6= Ȳqr. This contradicts optimality of Y ∗.

Note that Lemma 5 implies that solving (12) is essentially choosing between 0 and U∗jk for
Y ∗jk. This selection is also based on the following property.

Lemma 6 If π∗j > π∗k, then Y ∗jk = U tjk.

Proof For a contradiction, let us assume that there exist indices q and r such that Y ∗qr 6= U tqr
while π∗q > π∗r . Let us create a new solution Ȳ such that Ȳ = Y ∗ except Ȳqr = U tqr.

1. If Y ∗qr 6= 0, then Ȳ is a DAG since supp(Ȳ ) ≤ supp(Y ∗) element-wise.

2. If Y ∗qr = 0, then arc (q, r) can be used in the solution without creating a cycle because
π∗q > π∗r . Hence, Ȳ is a DAG.

Therefore, Ȳ is a feasible solution to (12). However, it is easy to see that ‖Ȳ − U t‖2 <
‖Y ∗ − U∗‖2 because (Y ∗qr − U tqr)2 > 0 = (Ȳqr − U tqr)2. This contradicts optimality of Y ∗.

Given the topological order by Y ∗, let Ĵk = {j ∈ Jk|π∗j > π∗k} be the subset of Jk such that

the nodes in Ĵk are earlier than node k. Combining Lemmas 5 and 6, we conclude that Y ∗

has the following structure.

Y ∗jk =

{
U tjk if j ∈ Ĵk,
0 if j ∈ J \ Ĵk,

k ∈ J (18)

Further, we can calculate node k’s contribution to the objective function value without
explicitly using Y ∗.

Lemma 7 For each node k ∈ J , it contributes∑
j∈J\Ĵk

(U tjk)
2

to the objective function value for (12). In other words, the contribution of node k is the
squared sum of U tjk for nodes with π∗j < π∗k.

27



www.manaraa.com

Park and Klabjan

Proof For node k, we can derive∑
j∈J(Y ∗jk − U tjk)2 =

∑
j∈J\Ĵk(Y ∗jk − U tjk)2 =

∑
j∈J\Ĵk(U tjk)

2,

where both equal signs are due to (18). The first equality is due to Y ∗jk = U tjk for j ∈ Ĵk

and the second equality holds since Y ∗jk = 0 for j ∈ J \ Ĵk.

We next detail the derivation of the greedy algorithm presented in Algorithm 3. Let
J̄ ⊆ J be the index set of yet-to-be-ordered nodes and J̄c = J \ J̄ be the index set of the
nodes that have already been ordered. The procedure is equivalent to iteratively solving

k∗ = argmink∈J̄

{
min
Yk

{∑
j∈J

(Yjk − U tjk)2
}}
, (19)

where Yk = [Y1k, Y2k, · · · , Ymk] ∈ Rm×1 is the column in Y corresponding to node k. Set J̄
is updated by J̄ = J̄ \ {k∗} and π∗k∗ = |J̄ | after solving (19). We propose an algorithm to
solve (19) based on the properties of Y ∗ described in Lemmas 5 - 7. Given J̄ , we solve

k∗ = argmink∈J̄

{∑
j∈J̄

(U tjk)
2
}
. (20)

Next, we show that solving (20) gives an optimal solution Ȳjk∗ , j ∈ Jk to (19). We can
actually replicate the properties of Y ∗ for Ȳjk∗ .

Lemma 8 An optimal solution to (19) must have either Ȳjk∗ = 0 or Ȳjk∗ = U tjk∗ for all

j ∈ Jk.

Lemma 9 An optimal solution to (19) must have Ȳjk∗ = U tjk∗ for j ∈ J \ J̄ .

Lemma 10 An optimal solution to (19) must satisfy
∑

j∈J(Ȳjk∗ − U tjk∗)2 =
∑

j∈J̄(U tjk∗)
2

The proofs are omitted as they are similar to the proofs of Lemmas 5 - 7, respectively. Note
that, by Lemma 10, we show the equivalence of

∑
j∈J(Yjk∗−U tjk∗)2 and

∑
j∈J̄(U tjk∗)

2. This

result also holds for each term, k ∈ J̄ , of the argmin function in (19). Hence, the following
lemma holds.

Lemma 11 Solving (20) is equivalent to solving (19).

Observe that (20) is used in Line 3 of the greedy algorithm in Algorithm 3. Hence, by
property (19), the algorithm gives an optimal choice of node to be fixed with the pre-fixed
topological order.

Appendix B. Summary Statistics for Maximum Coefficients

In this section, we show that the heuristic formula (17) for selecting big M gives reasonable
and large enough values. Note that, when creating a synthetic instance, we used a random
DAG to generate multivariate data. Although the optimal DAG for the penalized least

28



www.manaraa.com

Bayesian Network Learning via Topological Order

squares is unknown, with appropriate penalty constants, we can use the implanted DAG to
obtain coefficients estimation. That is, we calculate

B̂ = max
j∈Jk,k∈K

|β̂jk|

by using the implanted DAG. The B̂ value is then compared with the big M value in (17)
for all instances used for MIP models (sparse data with n = 100 and m ∈ {20, 30, 40}).
We calculate minimum, average, and maximum of B̂ and M by m, s, and λ. The result is
presented in Table 3. Note that we have B̂ < M for all columns Min, Avg, and Max and
for all rows. Although only the summary statistics are presented in Table 3, we observed
that M is greater than B̂ for all cases considered.

By B̂ M
Param Value Min Avg Max Min Avg Max

m
20 0.17 0.65 1.48 0.33 1.34 3.73
30 0.18 0.62 0.95 0.36 1.32 3.10
40 0.18 0.63 1.03 0.36 1.33 3.30

s
1 0.17 0.53 0.79 0.33 1.13 2.04
2 0.23 0.63 0.94 0.45 1.33 3.54
3 0.32 0.74 1.48 0.63 1.53 3.73

λ

0.05 0.62 0.82 1.48 1.24 1.95 3.73
0.1 0.60 0.78 0.96 1.19 1.54 2.35
0.5 0.41 0.59 0.74 0.82 1.14 1.45

1 0.17 0.35 0.49 0.33 0.69 0.97

Table 3: Comparison of maximum coefficients and big M (sparse data with n = 100 and
m ∈ {20, 30, 40})

References

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian
networks. Journal of Machine Learning Research, 16:2273–2328, 2015.

Ali Baharev, Hermann Schichl, and Arnold Neumaier. An exact method for the
minimum feedback arc set problem. Technical report, 2015. Available from
http://www.mat.univie.ac.at/∼neum/.

G Bolotashvili, M Kovalev, and Eberhard Girlich. New facets of the linear ordering polytope.
SIAM Journal on Discrete Mathematics, 12(3):326–336, 1999.

David Maxwell Chickering. Learning Bayesian networks is NP-complete. In Learning from
data, pages 121–130. Springer, 1996.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3(Nov):507–554, 2002.

William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schri-
jver. Combinatorial Optimization. John Wiley & Sons, Inc., New York, NY, USA, 1998.

29

http://www.mat.univie.ac.at/$\sim $neum/


www.manaraa.com

Park and Klabjan

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2009.

Byron Ellis and Wing Hung Wong. Learning causal Bayesian network structures from
experimental data. Journal of the American Statistical Association, 103(482):778–789,
2008.

Guy Even, J Seffi Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

Henning Fernau and Daniel Raible. Exact algorithms for maximum acyclic subgraph on a
superclass of cubic graphs. In International Workshop on Algorithms and Computation,
pages 144–156. Springer, 2008.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-
tion with the graphical Lasso. Biostatistics, 9(3):432–441, 2008.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22,
2010.

Nir Friedman and Daphne Koller. Being Bayesian about network structure. A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50(1):95–125,
2003.

Fei Fu and Qing Zhou. Learning sparse causal Gaussian networks with experimental in-
tervention: regularization and coordinate descent. Journal of the American Statistical
Association, 108(501):288–300, 2013.

Michel X Goemans and Leslie A Hall. The strongest facets of the acyclic subgraph polytope
are unknown. In International Conference on Integer Programming and Combinatorial
Optimization, pages 415–429. Springer, 1996.

Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane algorithm for the
linear ordering problem. Operations Research, 32(6):1195–1220, 1984.

Martin Grötschel, Michael Jünger, and Gerhard Reinelt. On the acyclic subgraph polytope.
Mathematical Programming, 33(1):28–42, 1985.

Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In 49th Annual
IEEE Symposium on Foundations of Computer Science, pages 573–582. IEEE, 2008.

Sung Won Han, Gong Chen, Myun-Seok Cheon, and Hua Zhong. Estimation of directed
acyclic graphs through two-stage adaptive Lasso for gene network inference. Journal of
the American Statistical Association, 111(515):1004–1019, 2016.

Refael Hassin and Shlomi Rubinstein. Approximations for the maximum acyclic subgraph
problem. Information Processing Letters, 51(3):133–140, 1994.

30



www.manaraa.com

Bayesian Network Learning via Topological Order

David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine learning, 20(3):197–243, 1995.

R Kaas. A branch and bound algorithm for the acyclic subgraph problem. European Journal
of Operational Research, 8(4):355–362, 1981.

Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and Peter
Bühlmann. Causal inference using graphical models with the R package pcalg. Jour-
nal of Statistical Software, 47(11):1–26, 2012.

Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of computing, pages 95–103. ACM,
2007.

Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on
the mdl principle. Computational Intelligence, 10(3):269–293, 1994.

Janny Leung and Jon Lee. More facets from fences for linear ordering and acyclic subgraph
polytopes. Discrete Applied Mathematics, 50(2):185–200, 1994.

CL Lucchesi and DH Younger. A minimax theorem for directed graphs. Journal of the
London Mathematical Society, 17(3):369–374, 1978.

John E Mitchell and Brian Borchers. Solving linear ordering problems with a combined
interior point/simplex cutting plane algorithm. In High Performance Optimization, pages
349–366. Springer, 2000.

Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto. Structure discovery in Bayesian
networks by sampling partial orders. The Journal of Machine Learning Research, 17(1):
2002–2048, 2016.

Young Woong Park and Diego Klabjan. Subset selection for multiple lin-
ear regression via optimization. Technical report, 2013. Available from
http://www.klabjan.dynresmanagement.com.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.

Vijaya Ramachandran. Finding a minimum feedback arc set in reducible flow graphs.
Journal of Algorithms, 9(3):299–313, 1988.

Garvesh Raskutti and Caroline Uhler. Learning directed acyclic graphs based on sparsest
permutations. arXiv preprint arXiv:1307.0366, 2013.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A. Lauffenburger, and Garry P. Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005.

31

http://www.klabjan.dynresmanagement.com
https://www.R-project.org/


www.manaraa.com

Park and Klabjan

Ali Shojaie and George Michailidis. Penalized likelihood methods for estimation of sparse
high-dimensional directed acyclic graphs. Biometrika, 97(3):519–538, 2010.

Sara Van de Geer and Peter Bühlmann. L0-penalized maximum likelihood for sparse di-
rected acyclic graphs. The Annals of Statistics, 41(2):536–567, 2013.

32


	Bayesian Network Learning via Topological Order
	Bayesian Network Learning via Topological Order
	Abstract
	Keywords
	Disciplines
	Comments
	Creative Commons License

	Introduction
	MIP Formulations based on Topological Order
	Algorithms based on Topological Order
	Topological Order Swapping Algorithm
	Iterative Reorering Algorithm
	Gradient Descent Algorithm

	Estimation of Gaussian Bayesian Networks
	Computational Experiment
	Comparison of Iterative Algorithms
	Comparison of MIP Models
	Comparison of all MIP Models and Algorithms
	Real Data Example

	Conclusion

